Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464085

RESUMO

Chimeric antigen receptor (CAR)-engineered T and NK cells can cause durable remission of B-cell malignancies; however, limited persistence restrains the full potential of these therapies in many patients. The FAS ligand (FAS-L)/FAS pathway governs naturally-occurring lymphocyte homeostasis, yet knowledge of which cells express FAS-L in patients and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancer types to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG is limited primarily to endogenous T cells, NK cells, and CAR-T cells while tumor and stromal cells express minimal FASLG. To establish whether CAR-T/NK cell survival is regulated through FAS-L, we performed competitive fitness assays using lymphocytes modified with or without a FAS dominant negative receptor (ΔFAS). Following adoptive transfer, ΔFAS-expressing CAR-T and CAR-NK cells became enriched across multiple tissues, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models, ΔFAS co-expression by CAR-T and CAR-NK enhanced antitumor efficacy compared with CAR cells alone. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS auto-regulatory circuit.

2.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904942

RESUMO

T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.

3.
Cell Rep Med ; 4(4): 101009, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040772

RESUMO

Immune checkpoint-inhibitor combinations are the best therapeutic option for advanced hepatocellular carcinoma (HCC) patients, but improvements in efficacy are needed to improve response rates. We develop a multifocal HCC model to test immunotherapies by introducing c-myc using hydrodynamic gene transfer along with CRISPR-Cas9-mediated disruption of p53 in mouse hepatocytes. Additionally, induced co-expression of luciferase, EGFP, and the melanosomal antigen gp100 facilitates studies on the underlying immunological mechanisms. We show that treatment of the mice with a combination of anti-CTLA-4 + anti-PD1 mAbs results in partial clearance of the tumor with an improvement in survival. However, the addition of either recombinant IL-2 or an anti-CD137 mAb markedly improves both outcomes in these mice. Combining tumor-specific adoptive T cell therapy to the aCTLA-4/aPD1/rIL2 or aCTLA-4/aPD1/aCD137 regimens enhances efficacy in a synergistic manner. As shown by multiplex tissue immunofluorescence and intravital microscopy, combined immunotherapy treatments enhance T cell infiltration and the intratumoral performance of T lymphocytes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Anticorpos Monoclonais , Terapia Combinada , Imunoterapia/métodos
4.
Cell Rep Med ; : 100978, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36933554

RESUMO

Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.

5.
Oncoimmunology ; 12(1): 2147317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531687

RESUMO

Previous studies have shown that local delivery of tumor antigen-specific CD8+ T lymphocytes engineered to transiently express single-chain IL-12 mRNA is highly efficacious. Peritoneal dissemination of cancer is a frequent and often fatal patient condition usually diagnosed when the tumor burden is too large and hence uncontrollable with current treatment options. In this study, we have modeled intracavitary adoptive T cell therapy with OVA-specific OT-I T cells electroporated with IL-12 mRNA to treat B16-OVA and PANC02-OVA tumor spread in the peritoneal cavity. Tumor localization in the omentum and the effects of local T-cell encounter with the tumor antigens were monitored, the gene expression profile evaluated, and the phenotypic reprogramming of several immune subsets was characterized. Intraperitoneal administration of T cells promoted homing to the omentum more effectively than intravenous administration. Transient IL-12 expression was responsible for a favorable reprogramming of the tumor immune microenvironment, longer persistence of transferred T lymphocytes in vivo, and the development of immunity to endogenous antigens following primary tumor eradication. The efficacy of the strategy was at least in part recapitulated with the adoptive transfer of lower affinity transgenic TCR-bearing PMEL-1 T lymphocytes to treat the aggressive intraperitoneally disseminated B16-F10 tumor. Locoregional adoptive transfer of transiently IL-12-armored T cells appears to offer promising therapeutic advantages in terms of anti-tumor efficacy to treat peritoneal carcinomatosis.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Peritoneais , Camundongos , Animais , Interleucina-12/genética , RNA Mensageiro/genética , Neoplasias Peritoneais/terapia , Transferência Adotiva , Antígenos de Neoplasias/genética , Modelos Animais de Doenças , Microambiente Tumoral
6.
Cancer Immunol Res ; 11(2): 184-198, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478221

RESUMO

IL12-based local gene therapy of cancer constitutes an active area of clinical research using plasmids, mRNAs, and viral vectors. To improve antitumor effects, we have experimentally tested the combination of mRNA constructs encoding IL12 and IL18. Moreover, we have used a form of IL18 [decoy-resistant IL18 (DR-18)] which has preserved bioactivity but does not bind to the IL18 binding protein decoy receptor. Both cytokines dramatically synergize to induce IFNγ release from mouse splenocytes, and, if systemically cotransferred to the liver, they mediate lethal toxicity. However, if given intratumorally to B16OVA tumor-bearing mice, the combination attains efficacy against the directly treated tumor and moderate tumor-delaying activity on distant noninjected lesions. Cotreatment was conducive to the presence of more activated CD8+ T cells in the treated and noninjected tumors. In keeping with these findings, the efficacy of treatment was contingent on the integrity of CD8+ T cells and cDC1 dendritic cells in the treated mice. Furthermore, efficacy of IL12 plus DR-18 local mRNA coinjection against distant concomitant tumors could be enhanced upon combination with anti-PD-1 mAb systemic treatment, thus defining a feasible synergistic immunotherapy strategy.


Assuntos
Interleucina-18 , Neoplasias , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Interleucina-12/metabolismo
7.
Cancer Discov ; 12(9): 2140-2157, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35771565

RESUMO

Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1ß upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1ß induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1ß inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE: IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1ß are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Animais , Citocinas/metabolismo , Humanos , Infliximab/farmacologia , Infliximab/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-8/genética , Camundongos , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Nat Med ; 28(5): 946-957, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484264

RESUMO

Public neoantigens (NeoAgs) represent an elite class of shared cancer-specific epitopes derived from recurrently mutated driver genes. Here we describe a high-throughput platform combining single-cell transcriptomic and T cell receptor (TCR) sequencing to establish whether mutant PIK3CA, among the most frequently genomically altered driver oncogenes, generates an immunogenic public NeoAg. Using this strategy, we developed a panel of TCRs that recognize an endogenously processed neopeptide encompassing a common PIK3CA hotspot mutation restricted by the prevalent human leukocyte antigen (HLA)-A*03:01 allele. Mechanistically, immunogenicity to this public NeoAg arises from enhanced neopeptide/HLA complex stability caused by a preferred HLA anchor substitution. Structural studies indicated that the HLA-bound neopeptide presents a comparatively 'featureless' surface dominated by the peptide's backbone. To bind this epitope with high specificity and affinity, we discovered that a lead TCR clinical candidate engages the neopeptide through an extended interface facilitated by an unusually long CDR3ß loop. In patients with diverse malignancies, we observed NeoAg clonal conservation and spontaneous immunogenicity to the neoepitope. Finally, adoptive transfer of TCR-engineered T cells led to tumor regression in vivo in mice bearing PIK3CA-mutant tumors but not wild-type PIK3CA tumors. Together, these findings establish the immunogenicity and therapeutic potential of a mutant PIK3CA-derived public NeoAg.


Assuntos
Antígenos de Neoplasias , Neoplasias , Animais , Antígenos de Neoplasias/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Camundongos , Mutação/genética , Neoplasias/genética , Receptores de Antígenos de Linfócitos T
9.
Nat Commun ; 12(1): 7296, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911975

RESUMO

CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.


Assuntos
Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Complexo CD3/genética , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
10.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172583

RESUMO

Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.


Assuntos
Antineoplásicos/toxicidade , Antineoplásicos/uso terapêutico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Inflamação/patologia , Fígado/patologia , Neoplasias Pulmonares/secundário , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos , Terapia Neoadjuvante , Peptídeo Hidrolases/metabolismo
11.
ESMO Open ; 4(Suppl 3): e000733, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32611557

RESUMO

CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.


Assuntos
Neoplasias , Animais , Anticorpos Monoclonais , Linfócitos T CD8-Positivos , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
12.
Cell Mol Immunol ; 17(6): 576-586, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32433539

RESUMO

Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.


Assuntos
Biônica , Engenharia Genética , Transdução de Sinais , Linfócitos T/imunologia , Animais , Humanos , Imunidade/imunologia , Neoplasias/imunologia
13.
Immunity ; 52(5): 856-871.e8, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32289253

RESUMO

Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.


Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias Experimentais/terapia , Receptores de Quimiocinas/agonistas , Receptores de Interleucina-8A/agonistas , Receptores de Interleucina-8B/agonistas , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HT29 , Humanos , Microscopia Intravital/métodos , Células Matadoras Naturais/imunologia , Ligantes , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Linfócitos T Citotóxicos/imunologia
14.
Theranostics ; 10(10): 4481-4489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292509

RESUMO

Activation-induced cell death (AICD) is a complex immunoregulatory mechanism that causes the demise of a fraction of T-lymphocytes upon antigen-driven activation. In the present study we investigated the direct role of TNF in AICD of CD8 T lymphocytes. Methods: Human peripheral mononuclear cells were isolated from healthy donors and fresh tumor-infiltrating lymphocytes were obtained from cancer patients undergoing surgery. T cells were activated with anti-CD3/CD28 mAbs or with a pool of virus peptides, in combination with clinical-grade TNF blocking agents. Results: A portion of CD8 T cells undergoes apoptosis upon CD3/CD28 activation in a manner that is partially prevented by the clinically used anti-TNF agents infliximab and etanercept. TNF-mediated AICD was also observed upon activation of virus-specific CD8 T cells and tumor-infiltrating CD8 T lymphocytes. The mechanism of TNF-driven T cell death involves TNFR2 and production of mitochondrial oxygen free radicals which damage DNA. Conclusion: The use of TNF blocking agents reduces oxidative stress, hyperpolarization of mitochondria, and the generation of DNA damage in CD8 T celss undergoing activation. The fact that TNF mediates AICD in human tumor-reactive CD8 T cells suggests that the use of TNF-blocking agents can be exploited in immunotherapy strategies.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Etanercepte/farmacologia , Infliximab/farmacologia , Inibidores do Fator de Necrose Tumoral/farmacologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Imunoterapia , Leucócitos Mononucleares/citologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Estresse Oxidativo/efeitos dos fármacos
15.
Clin Cancer Res ; 26(6): 1203-1204, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001482

RESUMO

T-cell recognizable p53 hotspot mutations offer opportunities for immunotherapy and immune monitoring. Recognition of p53 mutations by peripheral blood CD8 and CD4 T lymphocytes has been revealed.See related article by Malekzadeh et al., p. 1267.


Assuntos
Antígenos de Neoplasias , Proteína Supressora de Tumor p53 , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/metabolismo , Humanos , Imunoterapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/genética
16.
EMBO Mol Med ; 12(1): e10375, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31746149

RESUMO

Live 17D is widely used as a prophylactic vaccine strain for yellow fever virus that induces potent neutralizing humoral and cellular immunity against the wild-type pathogen. 17D replicates and kills mouse and human tumor cell lines but not non-transformed human cells. Intratumoral injections with viable 17D markedly delay transplanted tumor progression in a CD8 T-cell-dependent manner. In mice bearing bilateral tumors in which only one is intratumorally injected, contralateral therapeutic effects are observed consistent with more prominent CD8 T-cell infiltrates and a treatment-related reduction of Tregs. Additive efficacy effects were observed upon co-treatment with intratumoral 17D and systemic anti-CD137 and anti-PD-1 immunostimulatory monoclonal antibodies. Importantly, when mice were preimmunized with 17D, intratumoral 17D treatment achieved better local and distant antitumor immunity. Such beneficial effects of prevaccination are in part explained by the potentiation of CD4 and CD8 T-cell infiltration in the treated tumor. The repurposed use of a GMP-grade vaccine to be given via the intratumoral route in prevaccinated patients constitutes a clinically feasible and safe immunotherapy approach.


Assuntos
Imunoterapia , Neoplasias/terapia , Vacina contra Febre Amarela , Animais , Linfócitos T CD8-Positivos/imunologia , Reposicionamento de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Vacina contra Febre Amarela/uso terapêutico
17.
Cancer Cell ; 36(6): 613-629.e7, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31761658

RESUMO

Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva , Interleucina-12/genética , Linfócitos do Interstício Tumoral/imunologia , Transferência Adotiva/métodos , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Humanos , Imunoterapia Adotiva/métodos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia
18.
Cancer Immunol Res ; 7(10): 1564-1569, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31575551

RESUMO

T-cell functional behavior and performance are closely regulated by nutrient availability and the control of metabolism within the T cell. T cells have distinct energetic and anabolic needs when nascently activated, actively proliferating, in naïveté, or in a resting, memory state. As a consequence, bioenergetics are key for T cells to mount adequate immune responses in health and disease. Solid tumors are particularly hostile metabolic environments, characterized by low glucose concentration, hypoxia, and low pH. These metabolic conditions in the tumor are known to hinder antitumor immune responses of T cells by limiting nutrient availability and energetic efficiency. In such immunosuppressive environments, artificial modulation of glycolysis, mitochondrial respiratory capabilities, and fatty acid ß-oxidation are known to enhance antitumor performance. Reportedly, costimulatory molecules, such as CD28 and CD137, are important regulators of metabolic routes in T cells. In this sense, different costimulatory signals and cytokines induce diverse metabolic changes that critically involve mitochondrial mass and function. For instance, the efficacy of chimeric antigen receptors (CAR) encompassing costimulatory domains, agonist antibodies to costimulatory receptors, and checkpoint inhibitors depends on the associated metabolic events in immune cells. Here, we review the metabolic changes that costimulatory receptors can promote in T cells and the potential consequences for cancer immunotherapy. Our focus is mostly on discoveries regarding the physiology and pharmacology of IL15, CD28, PD-1, and CD137 (4-1BB).


Assuntos
Antígenos CD28/imunologia , Imunoterapia/métodos , Interleucina-15/imunologia , Mitocôndrias/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
19.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189719

RESUMO

Previous shortcomings of CD137-targeted immunotherapy may be overcome by engineered bispecific agents (Claus et al, this issue).


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Imunoterapia , Linfócitos T
20.
J Immunother Cancer ; 7(1): 116, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046839

RESUMO

Poly I:C is a powerful immune adjuvant as a result of its agonist activities on TLR-3, MDA5 and RIG-I. BO-112 is a nanoplexed formulation of Poly I:C complexed with polyethylenimine that causes tumor cell apoptosis showing immunogenic cell death features and which upon intratumoral release results in more prominent tumor infiltration by T lymphocytes. Intratumoral treatment with BO-112 of subcutaneous tumors derived from MC38, 4 T1 and B16-F10 leads to remarkable local disease control dependent on type-1 interferon and gamma-interferon. Some degree of control of non-injected tumor lesions following BO-112 intratumoral treatment was found in mice bearing bilateral B16-OVA melanomas, an activity which was enhanced with co-treatment with systemic anti-CD137 and anti-PD-L1 mAbs. More abundant CD8+ T lymphocytes were found in B16-OVA tumor-draining lymph nodes and in the tumor microenvironment following intratumoral BO-112 treatment, with enhanced numbers of tumor antigen-specific cytotoxic T lymphocytes. Genome-wide transcriptome analyses of injected tumor lesions were consistent with a marked upregulation of the type-I interferon pathway. Inspired by these data, intratumorally delivered BO-112 is being tested in cancer patients (NCT02828098).


Assuntos
Indutores de Interferon/administração & dosagem , Interferon Tipo I/metabolismo , Melanoma Experimental/tratamento farmacológico , Poli I-C/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral/transplante , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Injeções Intralesionais , Interferon Tipo I/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...